题目内容
【题目】已知数列的前项和为,且.
(1)证明是等比数列,并求的通项公式;
(2)求;
(3)设,若对恒成立,求实数的取值范围.
【答案】(1); (2); (3).
【解析】
(1)设,将已知条件中的式子进行转化,可得,从而证得其为等比数列,之后利用等比数列的通项公式求得,进而求得;
(2)利用错位相减法对数列求和,求得;
(3)根据题意求得,将恒成立转化为,利用作差比较法,求得,观察得出,进而求得的范围.
(1)设,则只需证明为等比数列即可,
因为为常数,
所以数列是公比为的等比数列,且首项,
则,所以.
(2)由(1)知 ①
②
①-②得,
(3)由(2)得,,
要使得对恒成立,只需,
因为,
所以,当时,,即,
当时,,即,所以,
所以.
练习册系列答案
相关题目
【题目】随机调查名性别不同的大学生是否喜欢打羽毛球,得到如下列联表:
男 | 女 | 总计 | |
喜欢打羽毛球 | |||
不喜欢打羽毛球 | |||
总计 |
临界值表:
参考公式:(其中)
参照临界值表,下列结论正确的是( )
A. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别有关”
B. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别无关”
C. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别有关”
D. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别无关”