题目内容
【题目】设:实数满足,其中;
:实数满足.
(Ⅰ)若,且为真,求实数的取值范围;
(Ⅱ)若是的必要不充分条件,求实数的取值范围.
【答案】(1) (2)
【解析】试题分析:(1)利用一元二次不等式的解法可化简命题p,q,若p∨q为真,则p,q至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.
试题解析:
(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,
又a>0,所以a<x<3a,
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.
q为真时等价于(x﹣2)(x﹣3)<0,得2<x<3,
即q为真时实数x的取值范围是2<x<3.
若p∨q为真,则实数x的取值范围是1<x<3.
(2)p是q的必要不充分条件,等价于qp且p推不出q,
设A={x|a<x<3a},B={x|2<x<3},则BA;
则,
所以实数a的取值范围是1≤a≤2。
练习册系列答案
相关题目