题目内容

【题目】定义方程 的实数根 叫做函数 的“新驻点”,若函数 的“新驻点”分别为 ,则 的大小关系为( )
A.
B.
C.
D.

【答案】C
【解析】∵g′(x)=1,h′(x)= ,φ′(x)=3x2,由题意得:

α=1,ln(β+1)= ,γ3﹣1=3γ2,①∵ln(β+1)=

∴(β+1)β+1=e,

当β≥1时,β+1≥2,

∴β+1≤ <2,

∴β<1,这与β≥1矛盾,∴﹣1<β<1;②∵γ3﹣1=3γ2,且γ=0时等式不成立,

∴3γ2>0∴γ3>1,∴γ>1.∴γ>α>β.

所以答案是:C


【考点精析】解答此题的关键在于理解简单复合函数的导数的相关知识,掌握复合函数求导:,称则可以表示成为的函数,即为一个复合函数,以及对函数的零点与方程根的关系的理解,了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网