题目内容
【题目】在平面直角坐标系中,椭圆: 的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)已知与为平面内的两个定点,过点的直线与椭圆交于, 两点,求四边形面积的最大值.
【答案】(1)(2)6
【解析】试题分析:(1)根据离心率及点在椭圆上可求出a,b,写出椭圆的方程;(2)联立直线和椭圆方程,消元得一元二次方程,求出弦长,再利用点到直线的距离求出高,即可写出面积,利用换元法,求其最大值.
试题解析:
解:(1)∵,∴,
椭圆的方程为,
将代入得,∴,
∴椭圆的方程为.
(2)设的方程为,联立
消去,得,
设点, ,
有, ,
有,
点 到直线的距离为,
点到直线的距离为,
从而四边形的面积(或)
令, ,
有 ,设函数, ,所以在上单调递增,
有,故,
所以当,即时,四边形面积的最大值为6.
练习册系列答案
相关题目
【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.
(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | |||
对商品不满意 | |||
合计 |
(2)若将频率视为概率,某人在该网购平台上进行的次购物中,设对商品和快递都满意的次数为随机变量,求的分布列和数学期望.
附: (其中为样本容量)