题目内容

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量 方向上的投影.

【答案】解:(Ⅰ)∵ =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . ∴cos(A﹣B)cosB﹣sin(A﹣B)sinB=﹣
∴cosB=﹣
∴sinB=
(Ⅱ)∵cosA=
∴﹣ =
解得:AB=1,
∴cosB= =
∴向量 方向上的投影为:
| |cosB=
【解析】(Ⅰ)根据两角差的余弦公式求出cosB,从而求出sinB即可;(Ⅱ)先求出AB,cosB,从而求出向量 方向上的投影.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网