题目内容
已知直线ax+by+c=0中的 a,b,c 是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,那么,这样的直线的条数是 .
【答案】分析:设倾斜角为θ,由tgθ>0,对a,b,c分情况讨论,利用排列组合公式即可.
解答:解:设倾斜角为θ,则tgθ=->0.不妨设a>0,则b<0.
(1)c=0,a有三种取法,b有三种取法,排除2个重复(3x-3y=0,2x-2y=0与x-y=0为同一直线),故这样的直线有3×3-2=7条;
(2)c≠0,则a有三种取法,b有三种取法,c有四种取法,且其中任两条直线均不相同,故这样的直线有3×3×4=36条.
从而,符合要求的直线有7+36=43条.
故答案为:43.
点评:本题考查直线的倾斜角与斜率,考查排列组合,突出考查化归思想与分类讨论思想的应用,属于难题.
解答:解:设倾斜角为θ,则tgθ=->0.不妨设a>0,则b<0.
(1)c=0,a有三种取法,b有三种取法,排除2个重复(3x-3y=0,2x-2y=0与x-y=0为同一直线),故这样的直线有3×3-2=7条;
(2)c≠0,则a有三种取法,b有三种取法,c有四种取法,且其中任两条直线均不相同,故这样的直线有3×3×4=36条.
从而,符合要求的直线有7+36=43条.
故答案为:43.
点评:本题考查直线的倾斜角与斜率,考查排列组合,突出考查化归思想与分类讨论思想的应用,属于难题.
练习册系列答案
相关题目
已知直线Ax+By+C=0(其中A2+B2=C2,C≠0)与圆x2+y2=4交于M,N,O是坐标原点,则
•
=( )
OM |
ON |
A、-1 | B、-1 | C、-2 | D、2 |