题目内容
【题目】观察(x2)′=2x,(x4)′=4x3 , (cosx)′=﹣sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(﹣x)=f(x),记g(x)为f(x)的导函数,则g(﹣x)=( )
A.﹣g(x)
B.f(x)
C.﹣f(x)
D.g(x)
【答案】A
【解析】解:由(x2)'=2x中,原函数为偶函数,导函数为奇函数; (x4)'=4x3中,原函数为偶函数,导函数为奇函数;
(cosx)'=﹣sinx中,原函数为偶函数,导函数为奇函数;
…
我们可以推断,偶函数的导函数为奇函数.
若定义在R上的函数f(x)满足f(﹣x)=f(x),
则函数f(x)为偶函数,
又∵g(x)为f(x)的导函数,则g(x)奇函数
故g(﹣x)+g(x)=0,即g(﹣x)=﹣g(x),
故选A.
由已知中(x2)'=2x,(x4)'=4x3 , (cosx)'=﹣sinx,…分析其规律,我们可以归纳推断出,偶函数的导函数为奇函数,再结合函数奇偶性的性质,即可得到答案.
练习册系列答案
相关题目
【题目】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况
加油时间 | 加油量(升) | 加油时的累计里程(千米) |
2015年5月1日 | 12 | 35000 |
2015年5月15日 | 48 | 35600 |
注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为 ( )
A.6升
B.8升
C.10升
D.12升