题目内容
8.已知数列{an}满足:a1=1,(n+2)an=(n-1)an-1+1,试求数列{an}的通项公式.分析 由已知得(n+2)(n+1)nan=(n-1)(n+1)nan-1+(n+1)n,令cn=(n+2)(n+1)nan,得cn-cn-1=(n+1)n,n≥2,且n∈N*,由此能推导出cn=4+$\frac{1}{3}n(n+1)(n+2)$,从而能求出数列{an}的通项公式.
解答 解:令n=2,得4a2=a1+1,${a}_{2}=\frac{1}{2}$,
(n+2)an=(n-1)an-1+1,
∴(n+2)(n+1)an=(n-1)(n+1)an-1+n+1,
∴(n+2)(n+1)nan=(n-1)(n+1)nan-1+(n+1)n,
令cn=(n+2)(n+1)nan,
则有cn=cn-1+(n+1)n,
∴cn-cn-1=(n+1)n,n≥2,且n∈N*,
∴cn=c2+(c3-c2)+(c4-c3)+…+(cn-cn-1)
=c2+4×3+5×4+…+(n+1)n
=4×3×2×a2+4×3+5×4+…+(n+1)n,
先求4×3+5×4+…+(n+1)n,
由n(n+1)(n+2)-(n-1)n(n+1)=n(n+1)[n+2-(n-1)]=n(n+1)×3,知:
n(n+1)=$\frac{1}{3}$[n(n+1)(n+2)-(n-1)n(n+1)],
∴4×3+5×4+…+(n+1)n
=$\frac{1}{3}$[5×4×3-2×3×4+4×5×6-5×4×3+…+n(n+1)(n+2)-(n-1)n(n+1)]
=$\frac{1}{3}[n(n+1)(n+2)-2×3×4]$
=$\frac{1}{3}n(n+1)(n+2)-8$,
∴${c}_{n}=4×3×2×{a}_{2}+\frac{1}{3}n(n+1)(n+2)-8$
=24×$\frac{1}{2}+\frac{1}{3}n(n+1)(n+2)-8$
=4+$\frac{1}{3}n(n+1)(n+2)$,
∴(n+2)(n+1)nan=4+$\frac{1}{2}n(n+1)(n+2)$,
∴(n+2)(n+1)nan=4+$\frac{1}{2}n(n+1)(n+2)$,
${a}_{n}=\frac{4}{(n+2)(n+1)n}+\frac{1}{3}$,
当n=1,${a}_{1}=\frac{4}{3×2×1}+\frac{1}{3}=1$,符合题意,
综上,${a}_{n}=\frac{4}{(n+2)(n+1)n}+\frac{1}{3}$,n∈N*.
点评 本题考查数列的通项公式的求法,综合性强,难度大,对数学思维能力的要求较高,解题时要认真审题,注意构造法、累加法、分组法的合理运用.
A. | (1,-1) | B. | (-2,0) | C. | (-3,1) | D. | (-1,1) |
A. | A∩B=∅ | B. | A=B | C. | A?B | D. | B?A |