题目内容

【题目】为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的部件中随机抽取400件,对其核心部件的尺寸x,进行统计整理的频率分布直方图.

根据行业质量标准规定,该核心部件尺寸x满足:|x12|≤1为一级品,1<|x12|≤2为二级品,|x12|>2为三级品.

(Ⅰ)现根据频率分布直方图中的分组,用分层抽样的方法先从这400件样本中抽取40件产品,再从所抽取的40件产品中,抽取2件尺寸x∈[1215]的产品,记ξ为这2件产品中尺寸x∈[1415]的产品个数,求ξ的分布列和数学期望;

(Ⅱ)将甲设备生产的产品成箱包装出售时,需要进行检验.已知每箱有100件产品,每件产品的检验费用为50.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每件支付200元补偿.现从一箱产品中随机抽检了10件,结果发现有1件三级品.若将甲设备的样本频率作为总体的慨率,以厂家支付费用作为决策依据,问是否对该箱中剩余产品进行一一检验?请说明理由;

(Ⅲ)为加大升级力度,厂家需增购设备.已知这种产品的利润如下:一级品的利润为500元/件;二级品的利润为400元/件;三级品的利润为200元/件.乙种设备产品中一、二、三级品的概率分别是.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据.应选购哪种设备?请说明理由.

【答案】(Ⅰ)分布列见解析,;(Ⅱ)不对剩余产品进行逐一检验,理由见解析;(Ⅲ)应选购乙设备,理由见解析.

【解析】

I)利用频率分布直方图中的频率(概率)求出尺寸在的产品件数,及在的产品件数,得ξ的可能取值为012,分别计算出概率得概率分布列,由分布列计算出期望;

II)三级品的概率为(0.1+0.075)×1=0.175,计算对剩余产品逐一检验和对剩余产品不检验需支付的费用,比较后可得;

III)利用频率(概率)计算出两种方案的利润期望,比较可得.

I)抽取的40件产品中,产品尺寸x∈[1215]的件数为:40×[(0.2+0.175+0.075)×1]=18

其中x∈[1415]的产品件数为40×(0.075×1)=3

ξ的可能取值为012

Pξ=0Pξ=1Pξ=2

ξ的分布列为:

Eξ012.

II)三级品的概率为(0.1+0.075)×1=0.175

若对剩余产品逐一检验,则厂家需支付费用50×100=5000

若对剩余产品不检验,则厂家需支付费用50×10+200×90×0.175=3650

50003650

故不对剩余产品进行逐一检验.

III)设甲设备生产一件产品的利润为y1,乙设备生产一件产品的利润为y2

Ey1)=500×(0.3+0.2)+400×(0.150+0.175)+200×0.175=415

Ey2)=500400200420.

Ey1)<Ey2.

∴应选购乙设备.

练习册系列答案
相关题目

【题目】东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:

以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.

(1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:

完成上述列联表,并判断能否有的把握认为停车是否超过6小时与性别有关?

(2)(i)X表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求X的概率分布列及期望:

(ii)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求P()的概率.

参考公式:,其中

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

【答案】(1);(2)100

【解析】试题分析:(1)根据题意 成等比数列得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论

解析:(1)由题意可得,则

,即

化简得,解得(舍去).

.

(2)由(1)得时,

,得,由,得

.

.

点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论

型】解答
束】
18

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网