题目内容
【题目】如图,在四棱锥中,侧面为等边三角形,且垂直于底面, ,分别是的中点.
(1)证明:平面平面;
(2)已知点在棱上且,求直线与平面所成角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;
(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.
(1),,又,,,
而、分别是、的中点,, 故面,
又且,故四边形是平行四边形,面,
又,是面内的两条相交直线, 故面面.
(2)由(1)可知,两两垂直,故建系如图所示,则
,
,,,
设是平面PAB的法向量,,
令,则,,
直线NE与平面所成角的余弦值为.
练习册系列答案
相关题目