题目内容
【题目】已知函数.
(1)当时,求函数的图象在处的切线方程;
(2)讨论函数的单调性;
(3)当时,若方程有两个不相等的实数根,求证:.
【答案】(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.
【解析】
(1)当时,,求得其导函数 ,,可求得函数的图象在处的切线方程;
(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性;
(3)当时,,,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.
(1)当时,,
所以 ,,
所以函数的图象在处的切线方程为,即;
(2)由已知得,,令,得,
所以当时,,当时,,
所以在上是减函数,在上是增函数;
(3)当时,,,由(2)得在上单调递减,在单调递增,
所以,且时,,当时,,,
所以当方程有两个不相等的实数根,不妨设,且有,,
构造函数,则,
当时,所以,
在上单调递减,且,,
由 ,在上单调递增,
.
所以.
练习册系列答案
相关题目