题目内容

【题目】已知c>0,且c≠1,设p:函数y=cx在R上单调递减;q:函数f(x)=x2﹣2cx+1在( ,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.

【答案】解∵函数y=cx在R上单调递减,∴0<c<1.

即p:0<c<1,

∵c>0且c≠1,∴¬p:c>1.

又∵f(x)=x2﹣2cx+1在( ,+∞)上为增函数,∴c≤

即q:0<c≤

∵c>0且c≠1,∴¬q:c> 且c≠1.

又∵“p或q”为真,“p且q”为假,

∴p真q假,或p假q真.

①当p真,q假时,{c|0<c<1}∩{c|c> ,且c≠1}={c| }.

②当p假,q真时,{c|c>1}∩{c|0<c }=

综上所述,实数c的取值范围是{c| }


【解析】由函数y=cx在R上单调递减,知p:0<c<1,¬p:c>1;由f(x)=x2﹣2cx+1在( ,+∞)上为增函数,知q:0<c≤ ,¬q:c> 且c≠1.由“p或q”为真,“p且q”为假,知p真q假,或p假q真,由此能求出实数c的取值范围.
【考点精析】本题主要考查了复合命题的真假的相关知识点,需要掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网