题目内容
【题目】设集合,其中.
(1)写出集合中的所有元素;
(2)设,证明“”的充要条件是“”
(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.
【答案】(1),,,;(2)证明见解析;(3)充要条件.
【解析】
(1) 根据题意,直接列出即可
(2) 利用的和的符号和最高次的相同,利用排除法可以证明。
(3) 利用(2)的结论完成(3)即可。
(1)中的元素有,,,。
(2)充分性:当时,显然
成立。
必要性:
若=1,则
若=,则
若的值有个1,和个。不妨设2的次数最高次为次,其系数为1,则
,说明只要最高次的系数是正的,整个式子就是正的,同理,只要最高次的系数是负的,整个式子就是负的,说明最高次的系数只能是0,就是说,即
综上“”的充要条件是“”
(3)
等价于
等价于
由(2)得“=”的充要条件是“”
即“=”是“” 的充要条件
【题目】食品安全一直是人们关心和重视的问题,学校的食品安全更是社会关注的焦点.某中学为了加强食品安全教育,随机询问了36名不同性别的中学生在购买食品时是否看保质期,得到如下“性别”与“是否看保质期”的列联表:
男 | 女 | 总计 | |
看保质期 | 8 | 22 | |
不看保持期 | 4 | 14 | |
总计 |
(1)请将列联表填写完整,并根据所填的列联表判断,能否有的把握认为“性别”与“是否看保质期”有关?
(2)从被询问的14名不看保质期的中学生中,随机抽取3名,求抽到女生人数的分布列和数学期望.
附:,().
临界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某校为了解高二学生、两个学科学习成绩的合格情况是否有关,随机抽取了该年级一次期末考试、两个学科的合格人数与不合格人数,得到以下22列联表:
学科合格人数 | 学科不合格人数 | 合计 | |
学科合格人数 | 40 | 20 | 60 |
学科不合格人数 | 20 | 30 | 50 |
合计 | 60 | 50 | 110 |
(1)据此表格资料,能否在犯错的概率不超过0.01的前提下认为“学科合格”与“学科合格”有关;
(2)从“学科合格”的学生中任意抽取2人,记被抽取的2名学生中“学科合格”的人数为,求的数学期望.
附公式与表: