题目内容

6.已知定义域为R的函数f(x)满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(2,f((2))处的切线方程是(  )
A.4x-y+4=0B.4x-y-4=0C.4x+y+4=0D.4x+y-4=0

分析 先根据f(x)=2f(2-x)-x2+8x-8求出函数f(x)的解析式,然后对函数f(x)进行求导,进而可得到y=f(x)在点(2,f(2))处的切线方程的斜率,最后根据点斜式可求导切线方程.

解答 解:∵f(x)=2f(2-x)-x2+8x-8,
∴f(2-x)=2f(x)-(2-x)2+8(2-x)-8.
∴f(2-x)=2f(x)-x2+4x-4+16-8x-8.
将f(2-x)代入f(x)=2f(2-x)-x2+8x-8
得f(x)=4f(x)-2x2-8x+8-x2+8x-8.
∴f(x)=x2,f′(x)=2x,
∴y=f(x)在(2,f(2))处的切线斜率为y′=4.
∴函数y=f(x)在(2,f(2))处的切线方程为y-4=4(x-2),
即y=4x-4.
故选:B.

点评 本题主要考查求函数解析式的方法和函数的求导法则以及导数的几何意义.函数在某点的导数值等于该点的切线的斜率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网