题目内容
15.在△ABC中,a=2bcosC,则△ABC的形状为等腰三角形.分析 先根据题设条件求得cosC的表达式,进而利用余弦定理求得cosC的另一表达式,二者相等化简整理求得b=c,进而判断出三角形为等腰三角形.
解答 解:∵a=2bcosC,
∴cosC=$\frac{a}{2b}$
∵cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$
∴$\frac{a}{2b}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,化简整理得b=c
∴△ABC为等腰三角形.
故答案为:等腰三角形.
点评 本题主要考查了解三角形的应用和三角形形状的判断.解题的关键是利用了cosC这一桥梁完成了问题的转化,属于中档题.
练习册系列答案
相关题目
5.如果方程x2+$\frac{{y}^{2}}{k}$=2表示焦点在x轴上的椭圆,那么实数k的取值范围是( )
A. | (0,2) | B. | (1,+∞) | C. | (0,1) | D. | (1,2) |
6.已知定义域为R的函数f(x)满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(2,f((2))处的切线方程是( )
A. | 4x-y+4=0 | B. | 4x-y-4=0 | C. | 4x+y+4=0 | D. | 4x+y-4=0 |
3.由不等式组$\left\{\begin{array}{l}{1≤x≤e}\\{lnx-y+1≥0}\\{2x-(e-1)y-2≤0}\end{array}\right.$确定的平面区域为M,由不等式组$\left\{\begin{array}{l}{1≤x≤e}\\{0≤y≤2}\end{array}\right.$确定的平面区域为N,在N内随机的取一点P,则点P落在区域M内的概率为( )
A. | $\frac{1}{2e-2}$ | B. | $\frac{e-2}{2e-2}$ | C. | $\frac{3-e}{4e-4}$ | D. | $\frac{e}{2e-2}$ |
7.已知f是有序数对集合M={(x,y)|x∈N*,y∈N*}上的一个映射,正整数数对(x,y)在映射f下对应的为实数z,记作f(x,y)=z.对于任意的正整数m,n(m>n),映射f由下表给出:
则使不等式f(2,x)≤3的解集为{1,2}.
(x,y) | (n,n) | (m,n) | (n,m) |
f(x,y) | n | m-n | m+n |
4.已知△ABC中的内角为A,B,C,重心为G,若2sinA$\overrightarrow{GA}$+$\sqrt{3}$sinB$\overrightarrow{GB}$+3sinC$\overrightarrow{GC}$=$\overrightarrow{0}$,则cosB=( )
A. | $\frac{1}{24}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |