题目内容

4.已知抛物线y2=4x的焦点为F,P为抛物线上一点,过P作y轴的垂线,垂足为M,若|PF|=4,则△PFM的面积为(  )
A.3$\sqrt{3}$B.4$\sqrt{3}$C.6D.8

分析 设出P的坐标,利用抛物线的定义可知|PF|=|PM|+1,进而可求得y0,最后利用三角性的面积公式求得答案.

解答 解:由题意,设P($\frac{{{y}_{0}}^{2}}{4}$,y0),则|PF|=|PM|+1=$\frac{{{y}_{0}}^{2}}{4}$+1=4,所以y0=±2$\sqrt{3}$,
∴S△MPF=$\frac{1}{2}$|PM||y0|=$\frac{1}{2}×3×2\sqrt{3}$=3$\sqrt{3}$.
故选:A.

点评 本题主要考查了抛物线的简单应用.涉及抛物线的焦点问题时一般要考虑到抛物线的定义,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网