题目内容
6.E、F分别是边长为1的正方形ABCD边BC、CD的中点,沿线AF,AE,EF折起来,则所围成的三棱锥的体积为( )A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{24}$ |
分析 由题意图形折叠为三棱锥,直接求出三棱柱的体积即可.
解答 解:由题意图形折叠为三棱锥,底面为直角△EFC,高为1,
所以三棱柱的体积:$\frac{1}{3}$×$\frac{1}{2}$×$\frac{1}{2}$×$\frac{1}{2}$×1=$\frac{1}{24}$,
故选:D.
点评 本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.
练习册系列答案
相关题目
17.i为虚数单位,则(1-i)2的虚部为( )
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
18.已知点P在曲线y=x3-x+$\frac{2}{3}$上移动,设点P处切线的倾斜角为α,则α的取值范围是( )
A. | [0,$\frac{π}{2}$] | B. | [0,$\frac{π}{2}$]∪(-$\frac{π}{2}$,0) | C. | [$\frac{3π}{4}$,π] | D. | [0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π) |
16.通过随机询问某校110名高中学生在购买食物时是否看营养说明,得到如下的性别与看营养列联表:
(1)从这50名女生中按是否看营养说明采取分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)从(1)中的5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;
(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
男 | 女 | 总计 | |
看营养说明 | 50 | 30 | 80 |
不看营养说明 | 10 | 20 | 30 |
总计 | 60 | 50 | 110 |
(2)从(1)中的5名女生样本中随机选取两名作深度访谈,求选到看与不看营养说明的女生各一名的概率;
(3)根据以上列联表,问有多大把握认为“性别与在购买食物时看营养说明”有关?
K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |