题目内容
【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.
【答案】
(1)解:甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜
①3:0,概率为P1=( )3= ;
②3:1,概率为P2=C ( )2×(1﹣ )× = ;
③3:2,概率为P3=C ( )2×(1﹣ )2× =
∴甲队3:0,3:1,3:2胜利的概率:
(2)解:乙队得分X,则X的取值可能为0,1,2,3.
由(1)知P(X=0)=P1+P2= ;
P(X=1)=P3= ;
P(X=2)=C (1﹣ )2×( )2× = ;
P(X=3)=(1﹣ )3+C (1﹣ )2×( )× = ;
则X的分布列为
X | 3 | 2 | 1 | 0 |
P |
E(X)=3× +2× +1× +0× =
【解析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.
练习册系列答案
相关题目