题目内容

【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.

【答案】
(1)解:甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜

①3:0,概率为P1=( 3=

②3:1,概率为P2=C 2×(1﹣ )× =

③3:2,概率为P3=C 2×(1﹣ 2× =

∴甲队3:0,3:1,3:2胜利的概率:


(2)解:乙队得分X,则X的取值可能为0,1,2,3.

由(1)知P(X=0)=P1+P2=

P(X=1)=P3=

P(X=2)=C (1﹣ 2×( 2× =

P(X=3)=(1﹣ 3+C (1﹣ 2×( )× =

则X的分布列为

X

3

2

1

0

P

E(X)=3× +2× +1× +0× =


【解析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网