题目内容
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
(1)求证:AD⊥平面BFED;
(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.
【答案】(1)证明见解析 (2)θ最小值为60°
【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再结合面面垂直的判定,证得DE⊥平面ABCD,即可证得AD⊥平面BFED;
(2)以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,求得平面PAB与平面ADE法向量,利用向量的夹角公式,即可求解.
(1)证明:在梯形ABCD中,
∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.
∴BD2=AB2+AD2-2AB·AD·cos 60°=3.
∴AB2=AD2+BD2,∴AD⊥BD.
∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,
DE平面BFED,DE⊥DB,∴DE⊥平面ABCD,
∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.
(1)由(1)知,直线AD,BD,ED两两垂直,故以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,
令EP=λ(0≤λ≤),则D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),
所以=(-1,,0),=(0,λ-,1).
设n1=(x,y,z)为平面PAB的法向量,
由得,取y=1,则n1=(,1,-λ).
因为n2=(0,1,0)是平面ADE的一个法向量,
所以cos θ===.
因为0≤λ≤
【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
分类 | 积极参加 班级工作 | 不太主动参 加班级工作 | 总计 |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
总计 | 24 | 26 | 50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.