题目内容
1.计算:$\underset{lim}{x→∞}$$\frac{{2x}^{2}+3}{3x+2}$sin$\frac{1}{x}$=$\frac{2}{3}$.分析 化简$\underset{lim}{x→∞}$$\frac{{2x}^{2}+3}{3x+2}$sin$\frac{1}{x}$=$\underset{lim}{x→∞}$$\frac{sin\frac{1}{x}}{\frac{3x+2}{2{x}^{2}+3}}$=$\underset{lim}{x→∞}$$\frac{\frac{1}{x}}{\frac{3x+2}{2{x}^{2}+3}}$,从而解得.
解答 解:$\underset{lim}{x→∞}$$\frac{{2x}^{2}+3}{3x+2}$sin$\frac{1}{x}$
=$\underset{lim}{x→∞}$$\frac{sin\frac{1}{x}}{\frac{3x+2}{2{x}^{2}+3}}$
=$\underset{lim}{x→∞}$$\frac{\frac{1}{x}}{\frac{3x+2}{2{x}^{2}+3}}$
=$\underset{lim}{x→∞}$$\frac{2{x}^{2}+3}{3{x}^{2}+2x}$
=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.
点评 本题考查了洛必达法则的应用.
练习册系列答案
相关题目
9.定义域为R的连续函数f(x)对任意x都有f(x)=f(4-x),且当x≠2时,其导函数满足(x-2)•f′(x)>0,则有( )
A. | f(sinx)<f(1+sinx)<f(52+sinx) | B. | f(52+sinx)<f(sinx)<f(1+sinx) | ||
C. | f(1+sinx)<f(sinx)≤f(52+sinx) | D. | f(1+sinx)<f(52+sinx)≤f(sinx) |