题目内容
【题目】已知命题:实数满足,:实数满足
(1)若为真命题,求实数的取值范围.
(2)若是的充分不必要条件,求实数的取值范围.
【答案】(1)或(2)
【解析】
试题分析:(1)根据题意可知,命题p,q分别表示一元二次不等式的解集,然后利用且命题为真,得到实数x的取值范围。
(2)根据p是q的充分不必要条件,表明q是p的充分不必要条件,利用集合的思想来求解得到。
(1) 当a>0时, {x|x2-4ax+3a2<0}={x|(x-3a)(x-a)<0}={x|a<x<3a},如果a=1时,则x的取值范围是{x|1<x<3},而{x|x2-x-6≤0,且x2+2x-8>0}={x|2<x≤3},
因为p∧q为真,所以有{x|1<x<3}∩{x|2<x≤3}={x|2<x<3}.故实数x的取值范围是{x|2<x≤3}.
(2) 若p是q的充分不必要条件,表明q是p的充分不必要条件.由(1)知,{x|2<x≤3}是{x|a<x<3a}(a>0)的真子集,易知a≤2且3<3a,解得{a|1<a≤2}.故实数a的取值范围是{a|1<a≤2}.
练习册系列答案
相关题目