题目内容
【题目】若直线ax+by—4=0和圆x2+y2=4没有公共点,则过点(a,b)的直线与椭圆+=1的公共点个数为( )
A. 0 B. 1 C. 2 D. 由a,b的取值来确定
【答案】C
【解析】
根据直线ax+by+4=0和圆x2+y2=4没有公共点,可推断点(a,b)是以原点为圆心,2为半径的圆内的点,根据圆的方程和椭圆方程可知圆x2+y2=4内切于椭圆,进而可知点P是椭圆内的点,进而判断可得答案.
因为直线ax+by+4=0和圆x2+y2=4没有公共点,
所以原点到直线ax+by+4=0的距离d=>2,
所以a2+b2<4,
所以点P(a,b)是在以原点为圆心,2为半径的圆内的点.
∵椭圆的长半轴 3,短半轴为 2
∴圆x2+y2=4内切于椭圆
∴点P是椭圆内的点
∴过点P(a,b)的一条直线与椭圆的公共点数为2.
故选:C.
练习册系列答案
相关题目