题目内容

四棱锥P-ABCD中,AD⊥面PAB,BC⊥面PAB,底面ABCD为梯形,AD=4,BC=8,AB=6,∠APD=∠CPB,满足上述条件的四棱锥的顶点P的轨迹是(  )
A.圆的一部分B.椭圆的一部分
C.球的一部分D.抛物线的一部分
在平面PAB内,
以AB所在直线为x轴,AB的中垂线为y轴,建立平面直角坐标系.
设点P(x,y),则由题意可得 A(-3,0),B(3,0).
∵AD⊥α,BC⊥α,AD=4,BC=8,AB=6,∠APD=∠CPB,
∴Rt△APDRt△CPB,
AP
BP
=
AD
BC
=
4
8
=
1
2

即 BP2=4AP2,故有(x-3)2+y2=4[(x+3)2+y2],
整理得:(x+5)2+y2=16,表示一个圆.
由于点P不能在直线AB上(否则,不能构成四棱锥),
故点P的轨迹是圆的一部分,
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网