题目内容
【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点.已知f(x)=x2+bx+c
(1)若f(x)有两个不动点为﹣3,2,求函数y=f(x)的零点?
(2)若c= 时,函数f(x)没有不动点,求实数b的取值范围?
【答案】
(1)解:∵f(x)=x2+bx+c有两个不动点﹣3,2,
即x2+(b﹣1)x+c=0有两个根﹣3,2
代入方程得b=2,c=﹣6,
∴f(x)=x2+2x﹣6,
∴函数y=f(x)的零点即x2+2x﹣6=0的根x=﹣1
(2)解:若c= 时,函数f(x)没有不动点,即方程x2+bx+ 无实数根,
∴△<0.
解得b> ,或b<﹣1
【解析】(1)﹣3,2为x2+(b﹣1)x+c=0的两根,解方程可求得b、c的值,从而可求得函数y=f(x)的零点;(2)函数f(x)没有不动点,方程x2+bx+ 无实数根,由△<0即可求得实数b的取值范围.
【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下 列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合计 | 75 | 25 | 100 |
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?