ÌâÄ¿ÄÚÈÝ

5£®ÒÑÖªµãH£¨0£¬-2£©£¬ÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬FÊÇÍÖÔ²EµÄÓÒ½¹µã£¬Ö±ÏßHFµÄбÂÊΪ$\frac{{2\sqrt{3}}}{3}$£®
£¨I£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©µãAΪÍÖÔ²EµÄÓÒ¶¥µã£¬¹ýB£¨1£¬0£©×÷Ö±ÏßlÓëÍÖÔ²EÏཻÓÚS£¬TÁ½µã£¬Ö±ÏßAS£¬ATÓëÖ±Ïßx=3·Ö±ð½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¬Çó|MN|µÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨I£©ÀûÓÃÖ±ÏßHFµÄбÂÊΪ$\frac{{2\sqrt{3}}}{3}$£¬Çó³öc£¬ÀûÓÃÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬Çó³öa£¬¿ÉµÃb£¬¼´¿ÉÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©·ÖÀàÌÖÂÛ£¬Ö±ÏßÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÓÉS£¬A£¬MÈýµã¹²Ïߣ¬¿ÉÇó|MN|µÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨I£©ÓÉÌâÒ⣬F£¨c£¬0£©£¬
¡ßÖ±ÏßHFµÄбÂÊΪ$\frac{{2\sqrt{3}}}{3}$£¬¡à$\frac{2}{c}$=$\frac{{2\sqrt{3}}}{3}$£¬¡àc=$\sqrt{3}$£¬
¡ßÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬
¡à$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$£¬
¡àa=2£¬b=1£¬
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨¢ò£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßlµÄ·½³ÌΪx=1£¬S£¨1£¬$\frac{\sqrt{3}}{2}$£©£¬T£¨1£¬-$\frac{\sqrt{3}}{2}$£©
ÓÉS£¬A£¬MÈýµã¹²Ïߣ¬µÃM£¨3£¬-$\frac{\sqrt{3}}{2}$£©£¬
ͬÀíN£¨3£¬$\frac{\sqrt{3}}{2}$£©£¬
¡à|MN|=$\sqrt{3}$£»
µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÓÉÌâÒâ¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬S£¨x1£¬y1£©£¬T£¨x2£¬y2£©£¬M£¨3£¬yM£©£¬N£¨3£¬yN£©
ÓÉS£¬A£¬MÈýµã¹²Ïߣ¬µÃyM=$\frac{{y}_{1}}{{x}_{1}-2}$£¬yN=$\frac{{y}_{2}}{{x}_{2}-2}$£¬
y=k£¨x-1£©´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨4k2+1£©x2-8k2x+4k2-4=0£®
Ôòx1+x2=$\frac{8{k}^{2}}{4{k}^{2}+1}$£¬x1x2=$\frac{4{k}^{2}-4}{1+4{k}^{2}}$£¬
¡à|x1-x2|=$\frac{4\sqrt{1+3{k}^{2}}}{1+4{k}^{2}}$£¬
¡à|MN|=|yM-yN|=$\frac{\sqrt{1+3{k}^{2}}}{|k|}$=$\sqrt{3+\frac{1}{{k}^{2}}}$£¾$\sqrt{3}$£¬
×ÛÉÏ£¬|MN|¡Ý$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬ÒÔ¼°Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÄÓ¦Ó㬿¼²éΤ´ï¶¨ÀíµÄÔËÓã¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø