题目内容
设向量a=(sin x,sin x),b=(cos x,sin x),x∈.
(1)若|a|=|b|,求x的值;
(2)设函数f(x)=a·b,求f(x)的最大值.
(1)若|a|=|b|,求x的值;
(2)设函数f(x)=a·b,求f(x)的最大值.
(1)x=(2)
(1)由|a|2=(sin x)2+(sin x)2=4sin2x,
|b|2=(cos x)2+(sin x)2=1,
及|a|=|b|,得4sin2x=1.
又x∈,从而sin x=,所以x=.
(2)f(x)=a·b=sin x·cos x+sin2x
=sin 2x-cos 2x+=sin+,
当x∈时,-≤2x-≤π,
∴当2x-=时,
即x=时,sin取最大值1.
所以f(x)的最大值为.
|b|2=(cos x)2+(sin x)2=1,
及|a|=|b|,得4sin2x=1.
又x∈,从而sin x=,所以x=.
(2)f(x)=a·b=sin x·cos x+sin2x
=sin 2x-cos 2x+=sin+,
当x∈时,-≤2x-≤π,
∴当2x-=时,
即x=时,sin取最大值1.
所以f(x)的最大值为.
练习册系列答案
相关题目