题目内容

10.如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=$\sqrt{2}$,给出下列五个结论
①AC⊥BE
②EF∥平面ABCD
③异面直线AE,BF所成的角为60°
④A1点到面BEF的距离为定值
⑤三棱柱A-BEF的体积为定值
其中正确的结论有:①②④⑤(写出所有正确结论的编号)

分析 ①AC⊥BE,可由线面垂直证两线垂直;
②EF∥平面ABCD,可由线面平行的定义请线面平行;
③由两个极端位置说明两异面直线所成的角不是定值;
④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值;
⑤三棱锥A-BEF的体积为定值,可证明棱锥的高与底面积都是定值得出体积为定值.

解答 解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;
②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;
③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.
④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;
⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.
故答案为:①②④⑤.

点评 本题考查棱柱的结构特征,解答本题关键是正确理解正方体的几何性质,且能根据这些几何特征,对其中的点线面和位置关系作出正确判断.熟练掌握线面平行的判断方法,异面直线所成角的定义以及线面垂直的证明是解答本题的知识保证.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网