题目内容
【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点,距离之比为常数且的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,为的中点,则三棱锥的体积的最小值为___________.
【答案】
【解析】
(1)以AB为轴,AD为轴,为轴,建立如图所示的坐标系,设,求出点P的轨迹为,即得解;(2)先求出点P的轨迹为,P到平面的距离为,再求出的最小值即得解.
(1)以AB为轴,AD为轴,为轴,建立如图所示的坐标系,则设,
由得,
所以,
所以若点在平面内运动,则点所形成的阿氏圆的半径为.
(2)设点,由得,
所以,
由题得
所以设平面的法向量为,
所以,
由题得,
所以点P到平面的距离为,
因为,
所以,所以点M到平面的最小距离为,
由题得为等边三角形,且边长为,
所以三棱锥的体积的最小值为.
故答案为:(1). (2). .
练习册系列答案
相关题目