题目内容
【题目】已知椭圆C:的离心率为,且过点A(2,1).
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
【答案】(1);(2)详见解析.
【解析】
(1)由题意得到关于a,b,c的方程组,求解方程组即可确定椭圆方程.
(2)设出点M,N的坐标,在斜率存在时设方程为, 联立直线方程与椭圆方程,根据已知条件,已得到m,k的关系,进而得直线MN恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q的位置.
(1)由题意可得:,解得:,故椭圆方程为:.
(2)设点.
因为AM⊥AN,∴,即,①
当直线MN的斜率存在时,设方程为,如图1.
代入椭圆方程消去并整理得:,
②,
根据,代入①整理可得:
将②代入,,
整理化简得,
∵不在直线上,∴,
∴,
于是MN的方程为,
所以直线过定点直线过定点.
当直线MN的斜率不存在时,可得,如图2.
代入得,
结合,解得,
此时直线MN过点,
由于AE为定值,且△ADE为直角三角形,AE为斜边,
所以AE中点Q满足为定值(AE长度的一半).
由于,故由中点坐标公式可得.
故存在点,使得|DQ|为定值.
【题目】将某公司200天的日销售收入(单位:万元)统计如下表(1)所示,
日销售收入 | ||||||
频数 | 12 | 28 | 36 | 54 | 50 | 20 |
频率 |
表(1)
(1)完成上述频率分布表,并估计公司这200天的日均销售收入(同一组中的数据用该组所在区间的中点值代表);
(2)已知该公司2020年第一、二季度的日销售收入如下表(2)所示,第三季度的日销售收入及其频率可用表(1)中的数据近似代替,且在2020年,当公司日销售收入为时,员工的日绩效为100元,当公司日销售收入为时,员工的日绩效为200元,当公司日销售收入为时,员工的日绩效为300元.以频率估计概率.
①若在第三季度某员工的工作日中随机抽取2天,记该员工2天的绩效之和为,求的分布列以及数学期望;
②若每个员工每个季度的工作日为50天,估计2020年前三个季度每个员工获得的绩效的总额.
日销售收入 | ||||||
频率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)