题目内容
已知函数
(a∈R).
(1)当
时,求
的极值;
(2)当
时,求
单调区间;
(3)若对任意
及
,恒有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115065661219.png)
成立,求实数m的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115061451017.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506161369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506332385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
(3)若对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506379616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506395622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115065661219.png)
成立,求实数m的取值范围.
(1)依题意知
的定义域为
…………………………(1分)
当
时,
令
,解得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506972443.png)
当
时,
;当
时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507050570.png)
又∵
∴
的极小值为
,无极大值 ……………(4分)
(2)
……………….(5分)
当
时,
,令
,得
,令
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507393608.png)
当
时,得
,令
得
或
;
令
得
;当
时, f(x)=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507799605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507814324.png)
综上所述,当
时,
的递减区间为
和
,递增区间为
;
当
时,
在
单调递减;当
时,
的递减区间为
和
,递增区间为
………………………………………………(8分)
(3)由(Ⅱ)可知,当
时,
在区间
上单调递减.
当
时,
取最大值;当
时,
取最小值;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508438967.png)
……….(10分)
∵
恒成立,∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115085631244.png)
整理得
,∵
,∴
恒成立,∵
,
∴
,∴m≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506754535.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506161369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115068941304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506925550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506972443.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506988562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507003560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507019472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507050570.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507066713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507128450.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115071441384.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507253417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507315510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507003560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507362821.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507050570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507393608.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507549499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507565515.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507003560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506988562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507612485.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507050570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507768578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507783397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507799605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507814324.png)
综上所述,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507253417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507877541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507892613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507908579.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507783397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506754535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211507549499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508111538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508126637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508158597.png)
(3)由(Ⅱ)可知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508329615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508360380.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508376323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508407382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211506176447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508438967.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115084701106.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508532901.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115085481204.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115085631244.png)
整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508579735.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508641388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508672767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508688514.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508719947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508735399.png)
(1)求导,让导数等于零,要注意根两边的函数值异号才是极值点。
(2)根据导数大于零和导数小于零,确定其单调增区间和减区间.
(3)先转化为
,然后求f(x)的最大值及最小值,即可求出
,然后再
,然后根据一次函数的性质解不等式即可。
(2)根据导数大于零和导数小于零,确定其单调增区间和减区间.
(3)先转化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115087501411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211508782907.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232115087971567.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目