题目内容

函数在闭区间[-3,0]上的最大值、最小值分别是         .
3,-17 
解:由f′(x)=3x2-3=0,得x=±1,
当x<-1时,f′(x)>0,
当-1<x<1时,f′(x)<0,
当x>1时,f′(x)>0,
故f(x)的极小值、极大值分别为f(-1)=3,f(1)=-1,
而f(-3)=-17,f(0)=1,
故函数f(x)=x3-3x+1在[-3,0]上的最大值、最小值分别是3、-17.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网