题目内容
7.(x2+x-$\frac{1}{x}$)6的展开式中的常数项是-5.分析 把原式后两项组合展开二项式定理,然后求出每一项中的常数项作和得答案.
解答 解:由(x2+x-$\frac{1}{x}$)6=$[{x}^{2}+(x-\frac{1}{x})]^{6}$
=${C}_{6}^{0}({x}^{2})^{6}(x-\frac{1}{x})^{0}+{C}_{6}^{1}({x}^{2})^{5}(x-\frac{1}{x})$$+{C}_{6}^{2}({x}^{2})^{4}(x-\frac{1}{x})^{2}+{C}_{6}^{3}({x}^{2})^{3}(x-\frac{1}{x})^{3}$$+{C}_{6}^{4}({x}^{2})^{2}(x-\frac{1}{x})^{4}+{C}_{6}^{5}({x}^{2})^{1}(x-\frac{1}{x})^{5}$$+{C}_{6}^{6}({x}^{2})^{0}(x-\frac{1}{x})^{6}$.
∵$(x-\frac{1}{x})^{4}$中含有x-4的项为${C}_{4}^{4}{x}^{0}(-\frac{1}{x})^{4}={x}^{-4}$,
$(x-\frac{1}{x})^{5}$中含有x-2的项不存在,
$(x-\frac{1}{x})^{6}$中的常数项为${C}_{6}^{3}{x}^{3}(-\frac{1}{x})^{3}=-{C}_{6}^{3}$.
∴(x2+x-$\frac{1}{x}$)6的展开式中的常数项是${C}_{6}^{4}-{C}_{6}^{3}=-5$.
故答案为:-5.
点评 本题考查了二项式系数的性质,考查了分析问题和解决问题的能力,考查了计算能力,是中档题.
练习册系列答案
相关题目