题目内容
【题目】已知数列{an}的前n项和Sn=2n2+n,n∈N* .
(1)求{an}的通项公式;
(2)若数列{bn}满足an=4log2bn+3,n∈N* , 求数列{anbn}的前n项和Tn .
【答案】
(1)解:当n=1时,a1=S1=3;
当n≥2时, .
经检验,n=1时,上式成立.
∴an=4n﹣1,n∈N*.
(2)解:∵an=4log2bn+3=4n﹣1,∴bn=2n﹣1.
∴ ,n∈N*.
∴ ,①
①×2得: ,②
∴ .
故 .
【解析】(1)根据an= 解出;(2)求出bn , 使用错位相减法求和.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目