题目内容

【题目】已知数列{an}的前n项和Sn=2n2+n,n∈N*
(1)求{an}的通项公式;
(2)若数列{bn}满足an=4log2bn+3,n∈N* , 求数列{anbn}的前n项和Tn

【答案】
(1)解:当n=1时,a1=S1=3;

当n≥2时,

经检验,n=1时,上式成立.

∴an=4n﹣1,n∈N*


(2)解:∵an=4log2bn+3=4n﹣1,∴bn=2n1

,n∈N*

,①

①×2得: ,②


【解析】(1)根据an= 解出;(2)求出bn , 使用错位相减法求和.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网