题目内容
【题目】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )
A.
B.
C.
D.
【答案】C
【解析】解:由三视图可知:该几何体是一个如图所示的三棱锥(图中红色部分),它是一个正四棱锥的一半,
其中底面是一个两直角边都为6的直角三角形,高EF=4.
设其外接球的球心为O,O点必在高线EF上,外接球半径为R,
则在直角三角形AOF中,AO2=OF2+AF2=(EF﹣EO)2+AF2 ,
即R2=(4﹣R)2+(3 )2 ,
解得:R=
故选C.
由三视图可知:该几何体是一个如图所示的三棱锥(图中红色部分),它是一个正四棱锥的一半,其中底面是一个两直角边都为6的直角三角形,高为4.设其外接球的球心O必在高线EF上,利用外接球的半径建立方程,据此方程可求出答案.
练习册系列答案
相关题目
【题目】某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:
喜欢看足球比赛 | 不喜欢看足球比赛 | 总计 | |
男 | |||
女 | |||
总计 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2= ,其中n=a+b+c+d
参考数据:
P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |