题目内容
【题目】已知F1,F2是椭圆C:(a>b>0)的左、右焦点,过椭圆的上顶点的直线x+y=1被椭圆截得的弦的中点坐标为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l交椭圆于A,B两点,当△ABF2面积最大时,求直线l的方程.
【答案】(Ⅰ)y2=1;(Ⅱ)x﹣y0或x+y0.
【解析】
(Ⅰ)根据直线椭圆的过上顶点,得b=1,再利用点差法以及弦中点坐标解得a2=3,即得椭圆方程;
(Ⅱ)先设直线l方程并与椭圆方程联立,结合韦达定理,并以|F1F2|为底边长求△ABF2面积函数关系式,在根据基本不等式求△ABF2面积最大值,进而确定直线l的方程.
(Ⅰ)直线x+y=1与y轴的交于(0,1)点,∴b=1,
设直线x+y=1与椭圆C交于点M(x1,y1),N(x2,y2),
则x1+x2,y1+y2,
∴1,1,
两式相减可得(x1﹣x2)(x1+x2)(y1﹣y2)(y1+y2)=0,
∴,
∴ 1,
解得a2=3,
∴椭圆C的方程为y2=1.
(Ⅱ)由(Ⅰ)可得F1(,0),F2(,0),设A(x3,y3),B(x4,y4),
可设直线l的方程x=my,将直线l的方程x=my代入y2=1,可得(m2+3)y2﹣2my﹣1=0,
则y3+y4,y3y4,
|y3﹣y4|,
∴|F1F2||y3﹣y4|||y3﹣y4|,
当且仅当,即m=±1,△ABF2面积最大,
即直线l的方程为x﹣y0或x+y0.
练习册系列答案
相关题目