题目内容
【题目】全民参与是打赢新型冠状病毒防疫战的根本方法.在防控疫情的过程中,某小区的“卡口”工作人员由“社区工作者”“下沉干部”“志愿者”三种身份的人员构成,其中社区工作者3人,下沉干部2人,志愿者1人.某电视台某天上午随机抽取2人进行访谈,某报社在该天下午随机抽取1人进行访谈.
(1)设表示上午抽到的社区工作者的人数,求随机变量的分布列和数学期望;
(2)设为事件“全天抽到的名工作人员的身份互不相同”,求事件发生的概率.
【答案】(1)详见解析(2)
【解析】
(1)的可能值为,分别求出每个值对应的概率,然后做出分布列,进而求出数学期望. (2)身份互不相同为:抽到一名社区工作者,一名下沉干部,一名志愿者.分类讨论逐一计算即可求出概率.
解:(1)的可能值为.
(每个)
所以随机变量的分布列为
0 | 1 | 2 | |
(2)身份互不相同为:抽到一名社区工作者,一名下沉干部,一名志愿者,上午同时抽取两个,情况为,下午抽取一个,情况为,所以
所以事件发生的概率.
【题目】为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取100件产品进行质量检测,所有产品质量指标值均在(15,45]以内,规定质量指标值大于30的产品为优质品,质量指标值在(15,30]的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.
质量指标 | 频数 |
(15,20] | 2 |
(20,25] | 8 |
(25,30] | 20 |
(30,35] | 30 |
(35,40] | 25 |
(40,45] | 15 |
合计 | 100 |
(1)请分别估计新、旧设备所生产的产品的优质品率.
(2)优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有95%的把握认为“产品质量高与新设备有关”.
非优质品 | 优质品 | 合计 | |
新设备产品 | |||
旧设备产品 | |||
合计 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
,其中.
(3)用频率代替概率,从新设备所生产的产品中随机抽取3件产品,其中优质品数为X件,求X的分布列及数学期望.