题目内容

(本小题满分14分)已知数列中,,其前项和满足.令.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求证:);
(Ⅲ)令),求同时满足下列两个条件的所有的值:①对于任意正整数,都有;②对于任意的,均存在,使得时,.
(Ⅰ)由题意知……1′

……2′
检验知时,结论也成立,故.…………3′
(Ⅱ)由于

.…………6′
(Ⅲ)(ⅰ)当时,由(Ⅱ)知:,即条件①满足;又
.
等于不超过的最大整数,则当时,.…9′
(ⅱ)当时,∵,∴,∴.
.
由(ⅰ)知存在,当时,
故存在,当时,,不满足条件. …12′
(ⅲ)当时,∵,∴,∴.
.
,若存在,当时,,则.
矛盾. 故不存在,当时,.不满足条件.
综上所述:只有时满足条件,故.…………14′
同答案
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网