题目内容
【题目】如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F.
(Ⅰ)求证:A,E,F,D四点共圆;
(Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
【答案】(1)证明过程详见解析;(2).
【解析】试题本题以正三角形为几何背景,考查四点共圆问题以及相似三角形问题,考查学生的转化与化归的能力.第一问,利用已知条件中边的比例关系可得出结论,再利用三角形相似,得出,所以,所以可证四点共圆;第二问,根据所给正三角形的边长为2,利用已知的比例关系,得出各个小边的长度,从而得出为正三角形,所以得出,所以是所在圆的圆心,而是半径,即为.
试题解析:(Ⅰ)证明:∵, ∴,
∵在正中,, ∴,
又∵,, ∴, ∴,
即,所以四点共圆. 5分
(Ⅱ)解:如图,
取的中点,连接,则,
∵, ∴,
∵,, ∴为正三角形,
∴,即,
所以点是外接圆的圆心,且圆的半径为.
由于四点共圆,即四点共圆,其半径为. 10分
练习册系列答案
相关题目
【题目】某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.
x(万元) | 3 | 5 | 7 | 9 | 11 |
y(万元) | 8 | 10 | 13 | 17 | 22 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?
相关公式:,.