题目内容
【题目】学校某文具商店经营某种文具,商店每销售一件该文具可获利3元,若供大于求则削价处理,每处理一件文具亏损1元;若供不应求,则可以从外部调剂供应,此时每件文具仅获利2元.为了了解市场需求的情况,经销商统计了去年一年(52周)的销售情况.
销售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周数 | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的销售量的频率为今年每周市场需求量的概率.
(1)要使进货量不超过市场需求量的概率大于0.5,问进货量的最大值是多少?
(2)如果今年的周进货量为14,写出周利润Y的分布列;
(3)如果以周利润的期望值为考虑问题的依据,今年的周进货量定为多少合适?
【答案】
(1)解:若进货量定为13件,则“进货量不超过市场需求量”是指“销售两不小于13件”,相应有13+13+8+4=38周.“进货量不超过市场需求量”的概率P= >0.5;同理:若进货量定为14件,则“进货量不超过市场需求量”的概率 <0.5;∴要使进货量不超过市场需求量的概率大于0.5,进货量的最大值是13.
(2)解:今年的周进货量为14,设“平均今年周利润”Y;若售出10件,则利润y=10×3+4×(﹣1)=26.售出11件,则利润y=11×3+3×(﹣1)=30.售出12件,则利润y=12×3+2×(﹣1)=34.售出13件,则利润y=13×3+1×(﹣1)=38.售出14件,则利润y=14×3=42.售出15件,则利润y=14×3+1×2=44.售出16件,则利润y=14×3+2×2=46.
Y的分布列为:
Y | 26 | 30 | 34 | 38 | 42 | 44 | 46 |
P |
E(Y)=26× +30× +34× +38× +42× +44× +46× ≈32.08.
(3)解:以周利润的期望值为考虑问题的依据,今年的周进货量定为11件或12件合适.
【解析】(I)若进货量定为13件,相应有13+13+8+4=38周.可得“进货量不超过市场需求量”的概率P= >0.5;同理:若进货量定为14件,则“进货量不超过市场需求量”的概率 <0.5,即可得出.(II)今年的周进货量为14,设“平均今年周利润”Y;若售出x件,x≤14时,则利润y=x×3+(14﹣x)×(﹣1).x≥15时,则利润y=14×3+(x﹣14)×2.即可得出Y的分布列.(III)以周利润的期望值为考虑问题的依据,今年的周进货量定为11件或12件合适.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.