题目内容

【题目】[选修4-5:不等式选讲]
设函数f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax对任意的实数x恒成立,求a的取值范围.

【答案】
(1)解:f(x)<g(x)等价于(x﹣4)2<(2x+1)2,∴x2+4x﹣5>0,

∴x<﹣5或x>1,

∴不等式的解集为{x|x<﹣5或x>1};


(2)解:令H(x)=2f(x)+g(x)= ,G(x)=ax,

2f(x)+g(x)>ax对任意的实数x恒成立,即H(x)的图象恒在直线G(x)=ax的上方.

故直线G(x)=ax的斜率a满足﹣4≤a< ,即a的范围为[﹣4, ).


【解析】(1)f(x)<g(x)等价于(x﹣4)2<(2x+1)2 , 从而求得不等式f(x)<g(x)的解集.(2)由题意2f(x)+g(x)>ax对任意的实数x恒成立,即H(x)的图象恒在直线G(x)=ax的上,即可求得a的范围.
【考点精析】利用绝对值不等式的解法对题目进行判断即可得到答案,需要熟知含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网