题目内容
【题目】在中,角、、所对的边分别为、、.已知.
(1)求;
(2)若的面积为,周长为 ,求.
【答案】(1);(2)7.
【解析】
试题分析:(1)首先利用正弦定理化已知条件等式中的边为角,然后利用两角和的正弦公式结合三角形内角和定理求得的值,从而求得角的大小;(2)首先结合(1)利用三角形面积公式求得的关系式,然后根据余弦定理求得的值.
试题解析:(1)由正弦定理可得
sinA=2sinAcosAcosB-2sinBsin2A …2分
=2sinA(cosAcosB-sinBsinA)=2sinAcos(A+B)=-2sinAcosC.
所以cosC=-,故C=. …6分
(2)由△ABC的面积为得ab=15, …8分
由余弦定理得a2+b2+ab=c2,又c=15-(a+b),
解得c=7. …12分
练习册系列答案
相关题目
【题目】重庆市某厂党支部10月份开展“两学一做”活动,将10名党员技工平均分为甲,乙两组进行技能比赛.要求在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
1号 | 2号 | 3号 | 4号 | 5号 | |
甲组 | 4 | 5 | 7 | 9 | 10 |
乙组 | 5 | 6 | 7 | 8 | 9 |
(1)分别求出甲,乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组技工的技术水平;
(2)质检部门从该车间甲,乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.