题目内容

函数y=Acos(ωx+φ)在一个周期内的图象如下,此函数的解析式为(  )
A、y=2cos(2x+
π
6
B、y=2cos(2x-
π
6
C、y=2cos(
x
2
-
π
3
D、y=2cos(2x+
π
3
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由图易知A=2,T=
ω
=π,可求得ω,再利用“五点作图法”,知2(-
π
12
)+φ=0,可求得φ,从而可得此函数的解析式.
解答: 解:由图知,A=2,
1
2
T
=
12
-(-
π
12
)=
π
2

所以T=
ω
=π,
解得:ω=2.
由“五点作图法”知,2(-
π
12
)+φ=0,解得:φ=
π
6

所以,此函数的解析式为:y=2cos(2x+
π
6
),
故选:A.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,利用“五点作图法”确定φ的值是难点,考查转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网