题目内容
【题目】如图,在矩形中, , 为的中点, 为的中点.将沿折起到,使得平面平面(如图).
图1 图2
(Ⅰ)求证: ;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
【答案】(Ⅰ)证明见解析;(Ⅱ) ;(Ⅲ) .
【解析】试题分析:(Ⅰ)根据等腰三角形的性质可得,由平面平面可得平面,从而可得;(Ⅱ)取中点为,连结,由矩形性质, ,可知,由(Ⅰ)可知, ,以为原点, 为轴, 为轴, 为轴建立坐标系,求出平面的一个法向量及直线的方向向量,利用空间向量夹角余弦公式可得结果;(Ⅲ)假设在线段上存在点,满足平面,设,利用直线与平面的法向量垂直,数量积为零,列方程求解即可.
.
试题解析:(Ⅰ)如图,在矩形中,
, 为中点, ,
为的中点,
由题意可知, ,
平面平面
图1 图2
平面平面,平面,
平面,
平面,
,
(Ⅱ)取中点为,连结,
由矩形性质, ,可知,
由(Ⅰ)可知, ,
以为原点, 为轴, 为轴, 为轴建立坐标系,
在中,由,则,
所以
,,
设平面的一个法向量为,
则,令,则,
所以,
设直线与平面所成角为,
,
所以直线与平面所成角的正弦值为.
(Ⅲ)假设在线段上存在点,满足平面
设,
由,,所以,
,,
若平面,则,
所以,解得,
所以.
【方法点晴】本题主要考查面面垂直的性质以及利用空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
由算得,,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”