题目内容
【题目】已知动圆P恒过定点,且与直线相切.
(Ⅰ)求动圆P圆心的轨迹M的方程;
(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.
【答案】(1) ;(2)或
【解析】
(1)根据题意及抛物线的定义可得轨迹的方程为;(2)设边所在直线方程为,代入抛物线方程后得到关于的二次方程,进而由根与系数的关系可得,又由两平行线间的距离公式可得,由求出或,于是可得正方形的边长,进而可得其面积.
(1)由题意得动圆的圆心到点的距离与它到直线的距离相等,
所以圆心的轨迹是以为焦点,以为准线的抛物线,且,
所以圆心的轨迹方程为.
(2)由题意设边所在直线方程为,
由消去整理得,
∵直线和抛物线交于两点,
∴,解得.
设,,
则.
∴.
又直线与直线间的距离为,
∵,
∴ ,解得或,
经检验和都满足.
∴正方形边长或,
∴正方形的面积或.
【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北. 湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:
普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 50 | |
个体经营户 | 50 | 150 | |
合计 |
(1)写出选择 5 个国家综合试点地区采用的抽样方法;
(2)补全上述列联表(在答题卡填写),并根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;
(3)根据该试点普查小区的情况,为保障第四次经济普查的顺利进行,请你从统计的角度提出一条建议.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |