题目内容
已知函数f(x)=(2cos2x-1)sin2x+cos4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=,求α的值.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=,求α的值.
(1) f(x)的最小正周期为,最大值为 (2)
解:(1)因为f(x)=(2cos2x-1)sin2x+cos4x
=cos2xsin2x+cos4x
=(sin4x+cos4x)
=sin(4x+),
所以f(x)的最小正周期为,最大值为.
(2)因为f(α)=,所以sin(4α+)=1.
因为α∈(,π),
所以4α+∈(,).
所以4α+=.故α=.
练习册系列答案
相关题目