题目内容
【题目】已知关于x的二次函数f(x)=ax2﹣4bx+1. (Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.
(Ⅱ)设点(a,b)是区域 内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.
【答案】解:要使函数y=f(x)在区间[1,+∞)上是增函数,则a>0且 ,即a>0且2b≤a. (Ⅰ)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1),(3,﹣2),(3,﹣1),(3,1),(4,﹣2),(4,﹣1),(4,1),(4,2),(5,﹣2),(5,﹣1),(5,1),(5,2)共16个,
所以,所求概率 .
(Ⅱ)如图,求得区域 的面积为 .
由 ,求得
所以区域内满足a>0且2b≤a的面积为 .
所以,所求概率
【解析】(Ⅰ)分a=1,2,3,4,5 这五种情况来研究a>0,且 ≤1的取法共有16种,而所有的取法共有6×6=36 种,从而求得所求事件的概率.(Ⅱ)由条件可得,实验的所有结果构成的区域的面积等于S△OMN= ×8×8=32,满足条件的区域的面积为S△POM= ×8× = ,故所求的事件的概率为 P= ,运算求得结果.
【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
练习册系列答案
相关题目