题目内容
如图,三棱柱中,侧面底面,,且,O为中点.(Ⅰ)证明:平面;(Ⅱ)求直线与平面所成角的正弦值
(Ⅰ)证明略(Ⅱ).
解析
(12分)已知直三棱柱中,,点M是的中点,Q是AB的中点,(1)若P是上的一动点,求证:;(2)求二面角大小的余弦值.
(本小题满分14分).如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC的中点,且DE∥BC.(1)求证:DE∥平面ACD(2)求证:BC⊥平面PAC;(3)求AD与平面PAC所成的角的正弦值;
(1)(如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积(2)如图,在四边形中,,,,,,求四边形绕旋转一周所成几何体的表面积及体积.
(本题满分14分)如图所示,在正三棱柱ABC -A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点。(I)求证:A1B1//平面ABD;(II)求证:AB⊥CE;(III)求三棱锥C-ABE的体积。
如图, 在空间四边形SABC中, 平面ABC, , 于N, 于M.求证:①AN^BC; ②平面SAC^平面ANM
(本小题满分12分) 如图,在梯形中,∥,,,平面平面,四边形是矩形,,点在线段上.(1)求证:平面BCF⊥平面ACFE;(2)当为何值时,∥平面?证明你的结论;
如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心.(Ⅰ)求圆锥的表面积;(Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,求截得的圆台的体积.
(本小题13分)一个用鲜花做成的花柱,它的下面是一个直径为2m、高为4m的圆柱形物体,上面是一个直径为2m的半球形体,如果每平方米大约需要鲜花200朵,那么装饰这个花柱大约需要多少朵鲜花(取3.1)?