搜索
题目内容
棱长为1的正方体
被以A为球心,AB为半径的球相截,则所截得几何体(球内部分)的表面积为 ( )
A.
B.
C.
D.
试题答案
相关练习册答案
A
由题意可知截得的几何体占整个球体体积的
,
所以
.
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
如图所示,多面体EF﹣ABCD中,底面ABCD为等腰梯形,AB∥CD,四边形ACFE为矩形,且平面ACFE⊥平面ABCD,AD=DC=BC=CF=1,AC⊥BC,∠ADC=120°
(1)求证:BC⊥AF
(2)求平面BDF与平面CDF所成夹角的余弦值.
如图,在三棱柱
中,侧棱
底面
,
为
的中点,
,
.
(1)求证:
平面
;
(2) 求四棱锥
的体积.
如图所示,已知直三棱柱ABC–A′B′C′,AC ="AB" =AA,=2,AC,AB,AA′两两垂直, E,F,H分别是AC,AB,BC的中点,
(I)证明:EF⊥AH;
(II)求平面EFC与平面BB′C′所成夹角的余弦值.
如图,直三棱柱
,
,
AA′=1,点M,N分别为
和
的中点。
(Ⅰ)证明:
∥平面
;
(Ⅱ)求三棱锥
的体积。(锥体体积公式V=
Sh,其中S为底面面积,h为高)
在边长为
的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.
(I)判别MN与平面AEF的位置关系,并给出证明;
(II)求多面体E-AFMN的体积.
正方体
中,侧面
内有一动点
到直线
与直线
的距离相等,则动点
的轨迹为一段 ( )
A.圆弧
B.双曲线弧
C.椭圆弧
D.抛物线弧
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
三棱锥V-ABC中,VA=VB=AC=BC=3,AB=2
,VC=7,画出二面角V-AB-C的平面角,并求它的余弦值。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总