题目内容
已知数列{an}满足Sn=n2an(n∈N*),其中Sn是{an}的前n项和,且a1=1,求
(1)求an的表达式;
(2)求Sn.
(1)求an的表达式;
(2)求Sn.
(1)由Sn=n2an(n∈N*),得Sn-1=(n-1)2an-1(n≥2),
两式相减,得an=n2an-(n-1)2an-1,整理得
=
(n≥2),
∴n≥2时,an=a1×
×
×…×
=1×
×
×
×…×
=
,
又a1=1适合上式,
∴an=
;
(2)由(1)知,an=
=2(
-
),
∴Sn=2(1-
+
-
+…+
-
)=2(1-
)=
.
两式相减,得an=n2an-(n-1)2an-1,整理得
an |
an-1 |
n-1 |
n+1 |
∴n≥2时,an=a1×
a2 |
a1 |
a3 |
a2 |
an |
an-1 |
1 |
3 |
2 |
4 |
3 |
5 |
n-1 |
n+1 |
2 |
n(n+1) |
又a1=1适合上式,
∴an=
2 |
n(n+1) |
(2)由(1)知,an=
2 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Sn=2(1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
2n |
n+1 |
练习册系列答案
相关题目