题目内容

【题目】已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an+bn , 求数列{cn}的前n项和Sn

【答案】解:(Ⅰ)设等差数列{an}的公差为d,
则由题设得
解得a1=1,d=2,
∴an=1+(n﹣1)×2=2n﹣1,
∵数列{bn}是以b1=3为首项,公比为3的等比数列,

(Ⅱ)∵cn=an+bn , ∴
∴Sn=1+3+5+7+…+(2n﹣1)+(3+32+33+…+3n
=
=
【解析】(Ⅰ)利用等差数列的通项公式由已知条件求出首项和公比,由此能求出等差数列{an}的通项公式;由数列{bn}是以b1=3为首项,公比为3的等比数列,能求出{bn}的通项公式.
(Ⅱ)由 , 利用分组求和法能求出数列{cn}的前n项和Sn
【考点精析】利用数列的前n项和和等差数列的性质对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系;在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网